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PLANNING FOR ELECTRIC UTILITY SOLAR Al"PLIC.\TIONS: THE EFFECTS ON 
RELIARII.ITY AND PRODUCTION COST ESTD!ATES OF THE V.:ARIABD.ITY- IN DEMAND 

George R. Fegan c. David Percival 
Solar Energy Research Institute 

Golden, Colorado 

Abstract - Previous studies have shown the 
necessity of the consideration ·of hourly varia
bility in the output from the inte~ttent gen
era~ion source. However, the studies did not 
take into account the variability in the de
mand. }~jor questions concerning the variabili
ties of demand and intermittent source output 
are { 1) does the demand variability dwarf the 
inte~ttent output .variability?; (2) can deoarid 
var!.ability be handled in the Baleriau.'t-Booth 
fraoe•.rork?; and (3) IJhat effect does the demand 
variability have ·on the LOLP criterion and the 
reserve margin? Before· attempting answers to 
these questions, the term variability in demand 
is clarified by distinguishing between variabil
itv due to randomness and variability due to 
fo~ecasting uncertainty. A result is presented 
which shows that under general conditions the 
variability due to randomness can be ignored ·ex
cept in the neighborhood of the peak and minimum 
demands. The above questions are then addressed 
in terms ~f the two types of variability in de
mand. 

INTRODUcriON 

Most of the solar applications for the elec
tric utilities' generation system are catego
rized as intermittent sources; that is, their 
power output may fluctuate freely from ze~:o to 
some naxio:~um during scall time intervals. In 
two pre·1ious papers [ 1, 2], the authors have 
claimed that ~easurements of average output from 
intermittent sources is inadequate and that the 
hourlv variability in output must· be consider
ed. ·However, there is some inconsistency in 
this position if one fails to take into account 
the variability in load or demand. In fact the 
most often heard objection to our position is 
"why should •.re consider the variability of the 
output from the solar devices when its effects 
are swamped by the variability of demand?" 

This comment gets some . theortical support 
from one oi the most widely used formulations of 
the reliability/production cost problem. The 
bas!c equation for the measure of reliability in 
the Ealereau.'t-Booth formulation is 

where 

?r = probability 

~ = load regarded as a random variable 

Capi '" capacity in MW regarded as the deter
ministic nat:~eplate rating of the i-th 
resource not on maintenance 

FOi • force outage in MW of the i-th source 
regarded as a random variable 

N u the number of sources on the system 

Now t~ conceptualization for the random 
variable L is usually done quite poorly as 
will be discussed below; the problem in concep
tualization is usually due to making a transi
tion from the concept "hours in which a certain 
load is exceeded" to the concept of probabil
ity. However, the observation to ·be made here 
is that the load or demand is a random variable; 
it· possesses a nonzer'o variability. To ade
quately address the variability of the intermit
tent output, one must have at least an intuitive 
handle on the variability in demand. 

Once it is recognized that this demand vari
ability must be considered, the question is how 
shall it be treated. The most common tools used 
in the evaluation ·of reliability and production 
costs are the Calabrese LOLP calculation and the 
Baleriaux-Booth framework. It has been demon
strated [1] that for reliability calculations 
the two methods are equivalent. Therefore ..,.e 
will gi•1e a procedure for the incorporation of 
demand variability into the Baleriaux-Booth 
framework. Its handling in Calabrese-type cal
culations should follow immediately. 

Since it is most common not to recognize 
load variability in the Baleriaux-Booth frame
work, the LOLP calculations based in the proce
dure described in this paper are quite different 
than those in which the variability is ignored. 
l~e will also try to establish some relationship 
between the LOLP calculation and the reserve 
margin as a percent of load in the situation in 
which variability in demand is being considered. 

V.:ARIABILITY DUE TO RA1IDO:!!SESS 'l'ERSUS 
V.UI.ARILITY DUE TO ASSm!ll!'TIONS 

When one seeks to answer the objection that 
the variability· in demand dominates any varia
bility traceable to the out?ut from the inter
oittent source, one must be certain as to what 
is meant by variability in demand. At one lelr'" 
el, the variability reflects the randomness in 
demand from excursions due to weather, transito
ry changes in electric ootor usage, ·and varia
tions due to entertainment habits. To be speci
t.!.c a forecaster makes a prediction for e:1ergy 
and peak demand for the next year on a month by 
month basis; The 'forecas·t interval, of course, 
could be shorter. If in the realization of that 



year all the assumptions, which the forecaster 
oade, remain true, the deviation of the actual 
demand from the forecas:: -;.;ill be governed by. 
random events. This de•1iation we will can ran
dom varia.blit;r. 

At the next level we have variation due to 
assumptions •. We can imagine a forecaster, faced 
with uncertainty in the economic sector, specu
lating on possible scenarios for the future, 
each of which would be weighted by some proba
bility. His econometric model then will produce 
different demand forecasts consistent wi:h the 
respective sees of assumptions. The spread of 
these forecasts fQr a given year represent what 
we will call variability due to assumptions or 
scenarios. 

The answer to our mythical objector then de
pends upon .ohich variability ln demand is !n
tended. Both levels of variability can be 
treated in a Baleriau.'l:-Booth framework but we 
will argue that it is almost meaningless to 
handle the va::iability due to scenario in this 
fashion. Also the question of dominance is not 
meaningful if the error distributions of the 
forecast remain identical in the random vari-
ability case. · 

RANDOM VA..'q.lABILITY 

I:t order :o e:tacine the random._ variability 
we must look at the ver1 nature of L, the ran-· 
dom variable represencing load in the Baleriaux
Booth framework. Booth himself leaves this term 
ill-defined: 

The probability distribution of the 
load le•1els experienced by the power system 
may conveniently be shown in a load duration 
curve as that sho~~ in Fig. l(a). This 
curve relates the loading levels to the per
centage of the total time that each load 
<~o•Jlt:l b~ nqu:'llled or exc~~Q.;'d [3]. 

How we get such a cur·1e is largely 
im~terial to this explanation, so here we 
have the probablibity distr.ibution (or den
sity function) for the loads we are to 
meet [.:.]. 

If one looks at the typical method of 
creating a load duration curve, one gets an in
sight into the_basis of confusion over the ran
dom variable L. Standard discussions recom':" 
mend that one plot the percent of time load ex
ceeds a particular load level versus the load 
level. The percent of tice is then interpreted 
as a probability number. The problem •.:ith this· 
is that if one is dealing with historical data 
and doing calculations over this history, every
thi::lg is deterministic. There doesn't seem to 
be any probabili~y questions which can be 
answered because history has already happened; 
there is no uncertainty involved. The concep
tual trick Yhen daaling with past his~ory is to 
imag::.ne one is at an unknown tin:e in history; 
the LDC merely represents the chances of seeing 

loads in excess of gi.ven values. Therefore, 
since one doesn't know the actual load at that 
point in history due to the lack of chronologi
cal data represen:ation in the LDC, one can ask 
questions· like "what are the chances of exceed
ing a load of 1000 M'..l?" The mistake is to re
gard the LDC as an aggregated history over· an 
interval; one should pretend that one is stand
ing at a unknown instant in that time interval 
equipped only with information concerning a fre
quency distribution. 

An easier ·way to conceive of . L, the randoo 
variable for demand or load, is to look at the 
problem froc the forecasting point of view. Let 
us imagine a forecaster being forced to make 
hourly forecasts over a given time interval. At 
each hour the forecaster gives an estimate of 
the II (hr) • aean value for the hour. These 
mean forecasts give a trajectory for the load 
over this interval. However, the forecaster 

·understands that as history passes and the tice 
interval is actually realized, there are an in
finite number of trajectories which could be 
realized. What the forecaster hopes for is that 
the actual trajectory will lie in a band around 
his forecasts of the means. Figure l gives a 
graphical representation of the process. 

Load 
MWe 

Time 

The Forecast 

Realized Demand 

A Probable but not 
Realized Trajectory 

Figure 1. Mean Forecast Vs. Possible Trajectories 

In reality the utility forecaster usually 
gives only a monthly energy and peak forecast 
rather than hourly forecasts; the argument is 
the same: he is estimating the II(" mean) and 
there are an infinite number of trajectories 
which can be realized. 

Turning our attention from. the forecast to 
past history, one can conceptualize the seem
ingly deterministic event in an analogous fash
ion. If one had made an. hourly forecast of the 
demand and the actual demand deviated from the 
forecast within reasonable limits and without 
systematic patte:ns, then one could imagine the 
forecast as being the mean hourly values for 
that year and. the actual history as a sin5le 
realization. If the· year could be played over 



and over again, the hourly arithmetic averages 
'.oi'Ould estimate mean values. In face a utility 
system which shewed little growth or change in 
loa<! profile from year to year would be in a 
sense .re.playing the year. Variations in hourly 
values would be due to random events, one of 
which would be weather. 

Now if one had not made a forecast for the 
previous years, one could use the actual demand 
to estimate the r.tean •;a lues. However, one •.;auld 
try to correct values which were noticeably· out 
of bounds, for instance, a demand reaction· to 
unusually cold weathe::-. Of course this !s what 
is actually done when one attel:!ptS to build a 
typical LDC: the utility planner either cor
rects for weather or averages normalized shapes 
over multi-years in an attempt to smooth unusual 
\'ar!ations. 

BALERIAUX-BOOTH FO~~TION FOR ~~M 
VA.'UABlLITY 

Before atter.tpting to place random· variabil
it?. into the Baleriaux-Booth context, one should 
sharpen one's concept of load duration curves 
(LDC's). As mentioned earlier the transition 
frcm building an LDC fr.om realized demand values 
tO a probabilistic interpretation causes some 
confusion. In Fig. 2 we see ho'W' the 8760 hourly 
values are normalized to give a probability 
scale. 

Load 
MWe 

Probability 

hrs 

Load Mwe 

Figure 2. {a) LDC as Percent of Time (hours) 
(b) LDC with Time Normalized and Axes 

Switehed 

At the point marked in the (a) figure, it is 
correct to say that 80 per cent of the hours ex
ceeded this value since the LDC represents val
ues realized. At some point, however, one must 
switch one's thinking from realized values to 
the estimate of the oean values. Therefore in 
the (b) figure it is not correct to say that 80 
per unit of the values exceeded the marked 
point. Since we are now conceiving of the LDC 
as being constructed of mean values it is quite 
possible that no actual values would lie exactly 
on the curve; that is, the values given are ex
pected values. In this context it is cor.rect to 
say that the!;'e is an 0.80 probability that the 
given value will be exceeded; we can also talk 
about the expectation that 80 per cent of the 
values will exceed the given one. But to say 
that 80 per cent of the values will exceed this 
value is to conceive of the der:~and as a deter
ministic event or as a realized set of values 
rather than as the set of means of random vari
ables. 

It is the concept that the individual hourly 
means do not have to be realized which allows us 
to incorporate the variability due to randomness 
directly into the Baleriaux-Booth formulation. 

The way LDC's are presently constructed is 
that if there. are n hours in a time interval 
each hour receives 1/n for a probability weight. 
Demand values are then ranked and weights accu
mulated. In the present construction we propose 
to take the hourly forecast of the mean and the 
variation and distribute the 1/n 1o1eight over a 
range of values for the hour. These values will 
then be ranked, weights aggregated,.. and a LiJC 
formed. 

To clarify catters we will use the following 
simple example 

HR 

2 
3 
It 

Table I. (a) Hourly D~nd Given as 
COnventional Averages 
(~) Pr [Load > L) 

(a) (b) 

Demand OM) L <mn Pr (Load > L) 

100 0 1.00 
150 100 o. so 
100 ISO o.o 
150 

The probability values 1:! (b) of Table II 
are arrived at by weighting those probability 
•1alues in (a) of Table II by the probability of 
the hours and summi!lg up tl:e weights· {or each 
value, i.e. for 70 ~N we have 0.20 x 1/4 + 0.20 
x 1/4 where 1/4 are the weights for hours 1 and 
3. The values are then ranked and the probabil
ities consecutively substracted from 1. 



Table II. (a) Actual Forecast Range 
(~) Pr [Load )l.) 

(a) (b) 

K..'t Demand L Pr 

2 

3 

4 

(~IW) Probabilit;; 

130 
115 

11=100 
85 
70 

170 
:J"'150 

140 
130 

130 
115 

11=100 
85 
70 

170 
11"'150 

140 
130 

Pr 

1.001----o 

.50-

.20 

.20 

.20 

.20 

.20 

.35 

.10 
• 40 
.15 

.20 

.20 

.20 

.20 

.20 

.35 

.10 

.40 

.15 

0 '------'--'----~ 
100 150 

MWe 

1.00 t----<..J 

(~IW) [Load 
> L] 

0 1.00 
70 0.90 
85 0.80 

100 0.70 
115 0.60 

130 0.425 
140 0.225 
150 0.175 
170 o. 0 

.80 

.60 

.40 

:2o .175. 

0~--~~~~~~~-~~ 
70 85 100115·130140150 170 

MWe 

Figure 3. (a) LDC for Conventional Forecast 
(b) LDC for Forecast with Uncertainty 

In Table I. we are given a conventional fore
cast; that is, hourly averages without uncer
tainty info:r;nation for a four hour period. In 
Table II we are given detailed inforcadon con
cerning 'the forecast, its range at each hour, 
and ::he probability of realizing the particular 
values· in the range. 

Table I contains the information of Table II 
in aggregated form. Figure· 3 gives load dura
tion curves for the information in Tables I & 
II. We wish to note in Table II that we have 
chosen the dist::-ibution within an hour . in un
realistic but entirely different manners. For 
hours 1 and 3 we ·have symmetric uncertainty 
ranges with a uniforc distribution and a mean. 
value of II = 100. For. hours 2 and 4 we have an 
as)'1llllletric uncertainty range with a mean value 
of II = 150. The fact that the distributions are 
not identical is extremely important for what is 
done below. 

lJe •..rould like 
things concerning 
(LDC's) of Fig. 3: 

to call attention to two 
the two Load Duration Cur•1es 

(1) the expected energy for both LDC' s are 
equal; 

(2) the second LDC is entirely consistent 
W'ith the concept of an LDC which "'e 
eh~ounded in the beginning of this section. 

The fact that the expected energies are 
equal is immediate on an intuitive level since· 
we are merely dofng something quite similar to 
taking averages of averages. The mathematical 
justification is that ,,;e are applying the dis
tributive law to 

4 
E[E(forecast, f), P] = E 

i=l 

where 

E = the expectation 

a, 
.1. 

f = distribution over the forecast 
P = distribution over the hour 
ni = number of uncertainty points. 

In this case •.o~e can consider that P equals 
1/n identically, where n is the number of hours. 

In our earlier discussion we pointed out 
that the ordinate values of an LDC should not be 
thought of as the percentage of time which the 
load was at value t. The interpretation we de
sire is that there is some chance or probability 
that the load will ~ak" on this value. To t:l3kii 
this idea clear let us look at the load value of 
70 !1We. This number comes from the forecast for 
hours 1 and 3. The forecaster say:; th3t at 
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those hours that load might occur with 0.20 pro
bability. However, theri:! is a 0.80 probability 
~hat it will not occur. wnen looking properly 
at the LDC, one must . ir.lagine oneself at some 
unknown instant of --~e in the 4 hour internal; 
that is, he is unaware of the specific hour. In 
2 out of 4 hours he has a 0. 20 probabilitv of 
seeing a load of 70 MWe• Therefore it is. r.ot · 
correct to say that he will not see 70 MW 10 
per cent of the time; but it is correct toe say 
that he has a .10 probability of seeing 70 ~~ • e 

l<e have shown that the probabilistic LDC 
which is essential to the Baleriaux-Booth frame
work can handle the random variability in the 
forecast. Next we would like to show the effect 
of this uncertainty in demand. Let us continue 
the example by ass=ing generation plants with 
the characteristics given in Table III. 

Table III. ASSUMPTIONS OF POWER PL&~ CHARAC
n:RIST!CS 

Nameplate Cap Probability 
Machine t·ftl Outage $/MWH 

100. o.o 40 

2 50 o.o 60 

lo/e have assumed 0.0 for a forced outage 
rate. The Baleriau."t-Booth framework has gained 
its importance by its ability to handle forced 
outage in connection with load through the con
volution technique. However, at this point we 
are concentrating on variation in load; anv non
zero forced outage rate will only compiicate 
~atters and obscure the purpose of the example. 
Using the values in Fig. 3 and applying economic 
dispatch we get the following costs and relia
bility :naasure 

Cmsts fo~. F~gmre 3 (a) 

L (~!'.-') 

100 1. 0 x 100 ~!'.,! X $40/!1\-IH X 4 RR .; S 16000 
150 .5 X 50 ~!l-1 X $60/MWH X 4 HR '" 6000 

TOTAL COST= $22000 

Probability of loss of load = 0.0 

Cmsts for F~g=re 3 {o) 

Cost =Production costs plus cost of expected 
unserved energy 

L(~!W) 
70 1. 0 X 70 ~!\-/ X $40/m~H x 4 HR '" $11200 
85 .9 X 15 ~[l.[ X 540/HWJ ., 4 HR = 2160 

100 .8 X 15 l-!'tl X $40/HI•ll. X 4'HR =- 1920 
115 . i ·' 15 Ml-1 X $60/HWH X 4 HR =- 2520 
lJG .• 6 X 15 Hl-i l( S60/~!l<1l. X ·" HR = 2tno 
140 •425 X 10 ~!1-/ X $60/~!lffi :~ 4 HR = 1020 
150 .225 ·' 10 ~fW X $60/~!WH X 4 HR = 540 

70TAL PRODUCTION COST = $21520 

170 Probability of loss of load 
0 (0.35 X X 2) '" 0.175 

Expected unserved energy 
.. • 17 5 X 20 MI-l X 4 HRS .. 14 HWH 

We note that the change in plant usage 
between ?igures 3(a) and 3 (b)is not just in the 
high cost peaking machine {1!2); (111) also gets 
less usage because there is some chance that 
there will be less than 100 ~ of demand. The 
case which used demand averages (a) does not 
recognize this possibility. We also have the 
peculiar situation where the costs in (b) are 
less than those in (a) but the reliability meas
ures are reversed. This is explainable if orie 
considers the extrel:tE!: if a system is 100 per 
cent unreliable there are no incremental fuel 
costs. So in (b) by fixing a cost for unserved 
energy greater than $60/~~H, ·one's intuition 
concerning reliability and cost is met. 

We have shown that both the reliability 
and the production costs are dependent upon the 
random variability or uncertainty in the 
forecast, i.e., average hourly forecasts gi•1e 
different results than the range oi values over 
the hour. 

When one considers the position the 
authors have ~eve loped in previous work [ 1, 2] , 
one sees the implications of this result. The 
standard procedure for · the evaluation of the 
worth of a solar . technology is to subtract the 
hourly solar output from the hourlv demand. The 
authors have shown that for wind machines and 
other solar sources, especially those without 
storage, there is a discrepancy between evalua
tions based on hourly inputs and those based on 
distributions over the hour. From the example 
above it appears that demand as a function of 
the hour and uncertainty in forecast should be 
expressed as 

where: 

D 

lJD 

~0 

~s 

= residual forecasted demand 

= mean of the forecast for the 
hour 

= a random variable . representing 
the range· of uncertainty in the 
demand 
'" mean of the output from the 
solar source 

= a random variable representing 
the variation in output from the 
solar devices. 

The dimensioni are in ~11m. 

If one ""ere to approximate Cht: ra,lge of val
ues in order to handle deviation values for de-
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Cland for th,g ho1,1r, _we would suggest choosir.g 
values for ~F' ~5 • ~S as given below: 

~D '" i vD i "'0,1,2,3 

~s = i/n (Range of values) i - 1, 2,. . . .,n 

lis = 0 

Where aD is the standard deviation for the 
forecast for the hour and n is some reasonable 
n~ber of bins or intervals for the range. 

~e combinatorics of the situation imply 
that we are taking every combination of the rea
sonably discretized forecast with the discre
tized range of output from the solar source or 
in cases for each hour. 

The increased computer costs when one 
switches from the difference between hourly av
erage forecast and the hourly average solar out
put to this combination case are not trivial. 
However, the pleasant surprise is that it is· not 
necessary to do the 7n calculation for each 
hour j in ClOSt cases one can ignore the random 
variation in the forecast except at the end
points of the LDC, the maximum and· minimum de
mand values. The for~l leoma which we prove in 
the Appendix states: 

Lemma: Let f(x) be a probability den
sity defined in [a,b]. For each x in 
[a+ c:, b-e:], (e: > 0), let there be 
defined one and only one density &x (T) 
T in [x - e:, x + e:] such that x is the 
expected value of the distribution de
fi:led by ~ (T). 

Define 
b 

h(x) • f(x) f gT(x) dT. 
a 

Tnen· h(X) if and only if gx(X + z) • gX 
_ z(X), for all X and ( .z c; e:). That 
is, the probabili:y :nass for h(X) at 
each X in [a + e:, b-e:] is the same as 
tha: for f(x)" if there exists a 
distribution gv (T) and all the other 

"o 
gx(T) are merely translated copies if 
that distribution. 

In less formal language and in the case oi a 
fnrer.ast, the. leml:'.a St~teS that if the forecast 
range at each hour is bounded fairly tightly and 
if the error· distribution is the same at each 
point in the forecast, then after one ranks the 
forecast values, one can forget about the vari
ation in the forecast except perhaps at dis
tances from the endpoints of the forecast which 
equal the range of uncertainty. 'r.le conclusion 
of course depends on the shape of the LDC. 

The proof in the Appendix handles the le~a 
in a more formalistic approach. We would like 
to present at this point a more intuitive ex
ample of the Lemma. Suppose forecasts are being 

made at the points n • 1,2,3,4,5,6. Suppose 
that the mean of the forecast is the point it
self, i.e., at 4, the mean of the forecast is 4. 
Further suppose at any interior point the fore
cast range· onlY includes the adjacent points. 
Also at the endpoints the forecast is the point 
itself with probability 0.5 and the adjacent 
point with probability 0. 5. This information is 
summarized in Table IV. 

If one accumulates the probability masses at 
each point one gets the results in Table V. 

:'rom the exaC!ple one gets an idea of the 
smoothing effect the forecast distribution has 
on the interior points. The uncertainty process 
begins to smooth out the values so they end up 
with the determistic mass of 1. 0 and of course 
this is·due to the uncertainty process borrowing 
mass from a value only to repay it from the un-

. certainty surro·unding its neighbors. 

Table IV. DATA FOR ~~LE BASED ON LEMMA 

Point Forecast· Range Probability 

2 

3 

5 

6 

1 o.s 
2 0.5 

1 0".25 
2 0.50 
3 0.25 

2 o. 25 
3 0.50 
4 0.25 

3 0.25 
4 o.so 
5 0.25 

4 . o. 25 
5 0.50 
6 0.25 

5 o.s 
6 o. 5 

Table V. AC~TION OF PROBABILITY MASSES 
IN TABLE IV 

Point Probability Hass 

1 0.75 
2 1. 25 
J 1.0 
4 1. 0 
5 1.25 
6 o. 7 5 

It is obvious that the forecasting p~ocerlure 
dces not rneet the basic assumptions of the 
Lem!l'a: 

{ 1) the range of uncer:ainty at any 
hour is unbounded.· 
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(2) ·the forecast has different stan
dard deviations (a's) according to the 
following regime: when one ranks the 
forecasts, the extreme values have 
larger a's 'than the· interior values. 

(3) f(x) should be interpreted as the 
density for the occurrence of demand. 
In reality we are dealing with the 
product of probabilicy of demand and 
the probability of error in forecast:; 
tha~ is 

b 
J f(T) g-:(x) d:r 
a 

onl:1 if f( T) is a constant do we gP.t 

b 
f(X) f g't(X) dT 

·a 

(1) can be jus t:.ified by forecasting theory. 
TI1e standard assumpt:.ion in forecast:.ing is chat 
che error of the forecast is normally distrib
u:e.i. Forgetting chat negative forecasts are 
meaningless, we are left: with a theoretical 
range of (-"', "'). However, the application of 
rorecasti:-tg leans heavily on the fact tha.t most 
of the probability distribution lies within 3 
st:.andard deviations of the mean; it is this fact 
which precludes worrying about negative fore
casts. Therefore if one is to discretize the 
range in a rational manner, one might choose 
bounds of (II - 3a, II + 3a) for the range of 
forecast. Since most of the probability mass is 
located in that region, the approximate range is 
both adequate and bounded. 

T~e second problem is that: there are "seams"· 
in the forecast, areas where the distribucion of 
uncertainc:' changes. In the. example above we 
have seen the effects of changes in a. (see 
~oints 1,2 1 5,6 in Table V). We can justify chis 
change in a by examining an LDC. The slope of 
the LDC is much greater at the endpoints than at 
the interior values. This implies that there is 
mora probability of an interior interval occur
~ng than one of the extreme values. The obvious 
reason for this is that more hours have been 
forecasted to lie around average demands; the 
neighborhoods of the peak rleoand and, quite pos
sibly, the ~inimum demands reflect: verf few 
hours and have a greater level of uncertaint:r. 
However, che lemma st:.ates that one can only dis
ciss the demand variability in the interior if 
all the uncertainty distributions are idencical. 
It: is our contention that one can make an excel
lent approx~mation by assuming constant: a except 
at the extremes and thereby not worry abo.ut the 
random variability of t:.he forecast: except: in the 
region around t:.he maximum and minimum values. 
:he convent:.ional LDC of hourly averages should 
only be altered then in small int:.ervals around 
the endpoints. The a's of the peak and minir.:uru 
forecast:.s can be est.i.mated fro111 historical data. 
Using our earlier concept of a historical· reali
zat:.ion as a trajecto~J lying within bands around 

the mean value of t:.he forecast, one can est:.imat:.e 
these a's. It is also quite likely that the a 
for the peak forecast will be great:.er than chat 
of t:.he minimum. Some personal observations of 
ut:.ili::y dat:.a have result:.ed in a guess at: t:.he a 
as being 6 to 9 per cent of t:.he forecast at: 
these points. We would then suggest an altera
t:.ion of the LDC only in t:.he neighborhood of 1 a 
above and bel~ t:.he peak and minimum forecast:.s 
respectively. !he assumpt:.ion is chat the a's at 
other points are identical. 

Finally (3) above implies that dist:.ribution 
over demand is uniform, That: this is not: so can 
be seen from the S shape of the LDC. However, 
for most LDC's a st:.raighc line can be fit 
through t:.he inflection point of this S curve; 
that is, if one disregards int:.ervals around the 
maximum and minimuc points the cumulative 
distribution function for de111and can be fit by a 
scraight line. Therefore chis int:.erior sect:.ion 
can be approximat:.ed by a uniform distribuc.ion 
and f( X) can be removed from t:.he int:.egral. It 
is this sect:.ion which we wish. to approximate. 
The larger the range of adequate fit co the 
st:.raight:. line, t:.he more justification we have 
for ignoring t:.he random variation :!.n demand. 
This is a function of the LDC. 

The conclusion on the effect of random vari
ability of t:.he demand is that its effects on 
cost are minimal but its effect on LOLl? can be 
quit:.e important. The increased spike in t:.he LDC 
due co peak uncertainty can have a major effect:. 
In relationship to the varibility in the output: 
of a solar source, che random variability in de
mand does not dominat:.e the pict:.ure. Rat:.her it: 
is t:.he variation in out:.put which has the major 
role since at: this time t:.here is not: e;;,idence 
which suggest:.s chat t:.he hourly distributions 
over output are ident:.ical as would be _required· 
by t:.he Lemma. If, of course, t:.he ~S were 
shown to be identically distributed, the use of 
hourly averages for the out:.put of the solar 
source could be justified. Finally t:.he combina
tions needed co represent: both random variat:.ion 
in the demand and variability in output are re
duced by the need co examine only the endpoints 
of the LDC. 

'RESERVE MARGL~ ~-RSUS LOLP 

There are t:.wo reliability · criterion used 
most frequently in electric ut:.ility planning: 
per cent: reserve mar5in and LOU'. Per cent re
serve oargin is usually defined as capacity in 
excess of a certain percent of t:.he forecast:.ed 
peak demand, The LOLP crit:.erion has been used 
in this paper and is assumed to be well-kn~n. 

Either one of t:.hese criteria cake an ade
quate planning goal. In face many utilities 
calculate an equivalency between 'che t';IO 
criteria, recognizing the face Chat the 
eq~ivalency :!.s a function of t:.ice. 

There is a curious phenomenon, however; some 
inst:.it:.utions use the per cent reserve margin as 
t:.he basis for planning and then make LOLP calcu-



lation separately. The reason usually expressed 
. for this is that the per cent reserve margin 
takes care of any untoward contingency where the 
LOLP gives the loss of load risk if conditions 
happen as expected. The conce~ being expressed 
here may be due to the fear of the uncertainty 
in the forecast. If this uncertainty is re
stricted to random variability, the alteration 
of the LDC at peak to represent this variability 
might make the LOLP more palatable as a planning 
criterion. This measure would then be respon-· 
sive to mix and random uncertainty •. 

VARIABILITY DUE TO ASS~IONS 

.The second level of variability in demand is 
that due to the basic assumptions upon which the 
forecast is made; for what follows let us iden
tify this level of uncertainty as scenario vari• 
at ion. 

If we imagine a forecaster using soll!e form 
of econometric forecasting tool, we can under
stand the demand differential as a function of -
the myriad of economic assumptions. We are also 
familiar with the currect situation of different 
forecasts of growth rates that are filed by ad
versaries in v:1rious siting cases. These var
ious growth rates would . give rise to different 
LDC's, dif:erent production costs, and different 
loss of load risks. 

We •.Jill show that scenario variation can. 
also be handled in the Baleriaux-Booth framework 
by presenting a simplified example. 

!able IV. ASS~IONS FOR ~~LE IN VARIATION 
DL'"E TO SCENARIO 

Load 
(:-!W) 

Scenario 
Hour f.il il2 i/3 ~lachine 

100 125 75 
1 150 175 125 2 

Probability for scenarios 
0.2 1) • .5 0.3 

Forced 
Nameplate Outage 
Cap (MW) Rate $/'l1W1i 

100 
so 

o.o 
o.o 

40 
60 

lve are given three point forecasts with no 
uncertainty bounds; each forecast co~ld be •s
sumed to represent a different rate of growth. 
The LDC's for the three scenarios are so trivial 
we will omit thee:. Table VII summaci.:es the 
basic statistics. 

!able VII. BASIC STATISTICS OF THE tlL~E 
SCENARIOS 

Expected Unserved 
Energy Cost of Energy 

Scenario (M'w'H) Production LOLP (M\JH) 

1 250 $11,000 o.o 0 
2 300 $12,500 0.5 25 
3 200 $ 8,500 o.o 0 

Expected Values over All Scenarios 

Energy • [0.2 (250 MWH) + 0.5 (300 M'~l) + 0.3 
(200 MWR)] m 260 MW1i 

Cost a 0.2 ($11,000) + 0.5 ($12,500) + 0.3 
($8,500) m $11,000 

LOLP c 0.2 (0) + 0.5 (0.5) + 0.3 (0) • 0.25 

Unserved Energy = 0. 2 (0 MliH) + 0. 5 (25 MHH) 
+ 0.3 (0 HWH) '" 12.5 MWH 

To show the siaplicity of the example we 
give the calculation of costs for scenario U1: 

1.0 X 100 Mlv X $40/HWH x 2 HR5 m $ 8,000 

0.5 X 50}~ X $60/M\YH X 2 HRS • $ 3,000 

$11,000 

Now if one regards the three scenarios as 
forecasts of the amount of demand_and the prob
ability of demand. for each hour, one gets the 
following Table. 

Table VIII. (a)-SCENARIOS TREATED AS FORECASTS 
(~) PR [LOAD ) L] FOR FORECASTS 

(a) (b) 

Demand Pr 
HR (:-!W) Probability L (:-!W) [Load > L] 

75 0.3 0 1.00 
100 0.2 75 0.85 
125 0.5 100 0.75 

125 0.3 125 o. 35 
2 150 0.2 150 0.25. 

175 o.s 175 o.o 

In the (a) section of Table VIII •.te have 
hanc;i.leq the scenar.ios just as we did the fore
casts earlier, i.e., the values given are the 
range for the hour. In the (b) part of the 
table we have weighted the probability by the 
hourly weight of 1/2 and foned the values for 
the LDC table given below 
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Figure 4. LOC for Scenarios Treated as Forecasts 

From the LDC and the mac~ine characteristics 
we get the following statistics: 

EAnected Energy ~ 
. (l, 0 X 75 H'..l) + (0. 85 X 25 111-1) 

+ (0,75 X 25 MW) + (0,33 X 25 
:·nn + (0, 25 X 25 MW) X 2 HRS 
~ 260 ~n·iH 

Cost D 1. 0 X 75 !1W :t $40/MWH x 2 HRS 
0,85 X 25 MWlt $40/~!'.JH X 2 H.~ 
0,75 X 25 MWx $60/MWH x 2 HRS 

.. $ 6,000 
• $ 1,700 
.. $ 2,250 

0.35 X 25 !f.l X $60/~twH X 2 P.RS " $ 1,050 

$11,000 

LOLP = 0.25 

Expected Unserved Energy ~ 0.25 x 25 MW x 2 HR 
= 12.5 MWH 

These statistics are as expected: from the 
expec~ed values over the scenarios one gets the 
same results as taking the distribution over the 
ce~~nd and calculating the expected values. We 
also . note that if one wanted to take into ac
::ount random variability of forecast given a 
particular scenario, we would proceed as before. 
The Baleriaux-Booth framework handles the use of 
~~~nari~ variabili~y as well as random variabil
ity. It requires only that one view the LDC as 
giving probabilities with respect to an instant 
of time. 

'.olhile the Baleriau.'(-Booth framewor~ handles 
scenario variability, it is questionable whether 
there is any value in using the technique for 
chis kind of uncertainty. The expected values 
for cost and reliability are pertinent for ran
dom variation. Gi·1en a set of assumptions, 
costs and service failure due to randomness are 
conditions of life. They can be considered un
U'Ioidablc risks. However, costs and risks due 
to scenario construction are a different matter. 
The individual costs and LOLP for each scenario 
is icpor:ant. The planner is concerned ~ith the 

risks of a planning schedule in the face of de
mand uncertaint'ies. '.olhen one takes expected 
values over all the scenarios as one does in 
treating the scenarios as forecast.s, one loses 
the individual· results from the scenario. They 
become aggregated and smoothed by the 
expectation process. For the planner it's quite 
important, as shown in our example, that he 
realize that he may be facing costs of $12500 
and 25 W.;"H of unserved energy from Scenario 112, 
the most probable scenario. The smoothing that 
occurs in the respective expected values of 
$11000 and 12.5 :1'.JH could be cdsleading 
infoi'!:Iation. 

With regards to the relationship between 
variation in the output from the intermittent 
source and that from scenario variation, it is 
usually stated that· large differences in rates 
of demand growth will dominate if the pentration 
of the intermittent sources is small in compar
ison.to the growth rates. But this is basically 
a ::U.sleading statement. If one chases to com
bine all scenarios with appropriate weights as 
we have done above, scenario variation domi
nates. However, ·if the scenarios are placed 
individually into the Baleriau.'(-Booth frae~ework 
then, as was shown in the random variation sec
tion of this pape.r, the variation in the inter
mittent output is the important concept. If one 
is interested in evaluating risks in the sce
narios, it is important to be concerned about 
the variability in output. 

CONCLUSIONS 

The major result· of the paper is that if one 
is concerned with a forecast, which has been 
ranked or ordered so that chronological order is 
lost, random variation in the forecast can lie 
ignored except in 'the neighborhood of this end
points if the error distributions are identical 
at every point in the forecast. If it were true 
that output from intermittent sour::es were iden
ticallv distributed and if one subtracted the 
output· from the load on an hourly basis and then 
ranked the residuals, variation in output could 
be ignored. However, it is more reasonable to 
assume that the variation :n output of intermit
tent sources will be a function of the mean of 
the hourly ou.tput; and since the mean 11ill vary 
diurnally for most intermittent sources, the 
ho~rly distributions will not be identical. 
Therefore the variation of output rust be con
sidered. The random •tariation of the forecast 
must only be considered near the peak and mini
mum demands. However, variation in demand due 
to assumptions can have a major effect on costs 
and reliability. Unless one is willing to lose 
the individual results from a scenario through 
the smoothing effects of expectation, the effect 
of output variation should still be considered 
on a scenario by scenario basis. 

UPEND IX 

Lemma: Let f(x) be a probability density 
defined on [a,b]. For each x in [a+ e, b - e], 



( £ > 0), let there be defined one and only one 
density gx (r), T in [x- £, x + £] such that x 
is the expected value of the distribution 
defi~ed by &x (T). Define: 

b 
h(:<) • f(:<) f gT(X) dT 

a 

Then h(x) • f(:<) if and only if gx(X + ::) .. 
<x> gX _ z' for all X and ( z < £). That.is, the 

probability mass for h(X) at each X in [a+£, b 
- £] is the same as that for f(x) if there 
exists a distribution gX (T) and all the oi:her 

0 
gX(T) are t~erely translated copies of that 

distribution. 

[Before giving the proof •.<e would like to 
make a few clarifications on the assumptions of 
the l~mma for the continuous case. For each 
point in the subinterval we are defining secon
darJ distributions as in the case of forecasting 
a ~ and acknowledging an .uncertainty around this 
~. Therefore at each x, probability mass is be
ing accur.tulated from the densities which have 
expected values in the. neighborhood of x. For 
this given x the accumulation has a magnitude of 
1 if the secondary densities (error distribu
tions) are identical except for translation. We 
also note that only expected values in the [x -
e, x ·+ £] neighborhood of x can contribute 
probability mass to x]. 

Proof: we first prove the _g_ part. 

Since &x(T) is a density defined on [x - £, 
X+£], for all x in [a+£, b - £] 

~(T) m 0 

x+e 
f gX(T) tiT = 1. 

x-s: 

:hen for all x in (a + £, b - e] 

b x+£ 
h(x) • f(x) f gT(T) dT • f(X) I gT(x) dT 

a 

But 

and 

Therefore 

x+£ 
h(x) • f(x) I gT (x) dT 

x-.: 

x+t: 
f(x~ f 

x-e 

For the only if part we will manufacture a 
counterexample, showing that if g~(!) is not 
identical the result does not hold. The counter
example will be for a discrete distribution 
without any loss of generality since integrals 
and s~tions could be interchanged in the 
above or alternatively the integrals ·could be 
interpreted as Riecann-Stieltjes integrals. 

:Let f(11) be a uniform distribution on 11 .. 
1,2, •• ,10, that is f(r,) "' 1/10 11 " 1,2, •• ,10 

Let £ "' 

Let gn (T) be 
manner: 

for n • 

for 11 .. 10 

for 11 .. 5 

for all other 11 

defined in the following 

81 (1) • 1 

g10 (lO) "' 

85 (4) .. 0.1 
g5 (5) .. 0.8 
85 (6) .. 0.1 
811 (11- 1) = 0.25 
811 (11) = 0.30 
gl1 (11 + 1) - 0.25 

Since £ ., 1 our concern is for the points 
2,3,4, •• ,9. \ole have defined g11 (T) identically 
except for· 11 = 5. 

For 2,3,7,8,9 

h(x) • f(x) 

as can be·seen in the calculation of h(2): 

3 
h(2) = f(2) E g

1
(2) = f(2) (0.25+0.50+0.25) 

1•1 . 
= f(2) 

But for· 4,5,6. 

h(x) ~ f(x). 
For 11 = 4 

5 
h(4) = f(4) !: gi(4) .. f(4) [. 025+0. 5+0. 1] 

i"'3 
= 0.85 f(4) 

6 
h(5) "' f(5) !: g1(4) = f(S) (0.25+0.8+0.25] 

1"'4 
"'1.3 £(5) 

7 
h(6) = f(6) !: gi (6) f(6) [0.1+0.3+0.23] 

i=5 
.. 0.85 f(6) 

[In intuitive terms it is at the seams, the 
points where the distributions differ, that 
probability mass starts to accu~ulate to values 
other than 1]. 
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